
A Processing Pipeline for Descriptive Underwater 3D Occupancy
Mapping with Scanning Sonar

Jinkun Wang and Brendan Englot

Fig. 1: At left, a photo of Stevens Institute of Technology’s
VideoRay Pro4 System, equipped with Micron sonar and
MicronNav positioning system. At right, operations at the
U.S. Merchant Marine Academy in Kings Point, NY, where
the data shown in this paper was gathered.

I. INTRODUCTION

We discuss an approach for 3D mapping using a remotely-
operated vehicle (ROV) in cluttered shallow-water environ-
ments where port and harbor infrastructure inspection is
of interest. Our goal is to equip the ROV with a map-
ping method that will support sound decision-making in
the process of autonomously exploring a a priori unknown
environment with a scanning sonar. This capability will be
important in the initial phases of inspecting an unstructured
environment, in which obtaining situational awareness, to an
extent that permits reasoning about obstacles and collision
avoidance, is an important first step prior to the detailed
inspection of specific areas. One of the most challenging
aspects of this task is producing a descriptive map amidst
the high levels of noise present in the sonar data.

High-accuracy underwater sonar-based mapping has been
achieved using variants of the iterative closest point (ICP)
scan-matching algorithm [8], which have been applied in
port and harbor settings to produce comprehensive 3D point
clouds [1], [5]. In addition, particle filters have been applied
[7] to produce 3D occupancy grid maps in settings with
substantial supporting structure, such as underwater caves
[3] and cisterns [10]. For 3D reasoning about maneuvering
and obstacle avoidance, an accurate grid-based map is highly
valuable. It is our goal to produce such maps in the unstruc-
tured environments in which scan-matching has previously
succeeded in producing high-quality point cloud maps. To do
so, we will leverage recent work in 3D occupancy mapping
[9] that allows predictive inference to be performed over
sparse and noisy data, producing a map that will serve
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Fig. 2: An underwater sonar scan collected in a cluttered
portion of a marina, in close proximity to ships, piers, and
a seawall. Structures of interest are labeled.

as a more descriptive decision-making aid. The processing
pipeline that supports this approach is described below.

The proposed methodology is implemented using the
VideoRay Pro4 ROV, equipped with a Tritech Micron scan-
ning sonar, shown in Figure 1. The system and its mapping
pipeline have been tested at the U.S. Merchant Marine
Academy in King’s Point, NY, where the ROV was deployed
and operated from the T/V King’s Pointer, and used to map
the surrounding structures in close proximity to this ship. Our
base of operations is shown in Figure 1, and an example scan
gathered in this environment is depicted in Figure 2.

II. SONAR PROCESSING PIPELINE

A preliminary filtering step is applied to each sonar scan
to extract the points from the image that are likely to
represent range returns from structures. A conservatively
high amplitude threshold is applied to the entire image.
The resulting points are subsequently clustered using the
density-based spatial clustering of applications with noise
(DBSCAN) algorithm [2], for which an appropriate number
of clusters is designated automatically. Each cluster is then
filtered individually using an amplitude threshold selected
locally from the distribution of amplitude values within each
cluster. A representative outcome of these steps is depicted



Fig. 3: At left, the contents of a single sonar scan after
conservatively applied global thresholding, which is subse-
quently partitioned using DBSCAN clustering. At right, the
results of filtering the scan cluster by cluster.

Fig. 4: At left, an overlay of scans collected while the ROV
executes a depth-varying transect, assuming that the ROV’s
position in the plane remains fixed. At right, the resulting
point cloud after the application of ICP scan-matching. The
data represents the same scene depicted in Figure 2.

in Figure 3. Individual scans filtered in this manner are
assembled into a composite point cloud, and consecutive
scans are registered using a variant of the ICP algorithm
[6]. We assume that the robot holds a fixed translational
position during the collection of each individual scan, and
any rotation that occurs during scanning is corrected using
the ROV’s compass. A depth sensor is used in concert with
ICP to estimate the robot’s motion between scans, ensuring
accurate registration of all points in the aggregate point cloud
relative to the robot’s starting position. Representative results
of ICP scan-matching are shown in Figure 4.

The resulting point cloud is then used to populate a 3D
occupancy map. Representative results are shown in Figure
5. A standard OctoMap [4] remains quite sparse, containing
many gaps that pose challenges for reasoning about mo-
tion planning and collision avoidance. However, a Gaussian
process occupancy map [9] leverages predictive inference
to close many of the surrounding obstacles and produce
a 3D map that may serve as a tool for further decision-

(a) 3D OctoMap.

(b) 3D Gaussian process occupancy map.

Fig. 5: The point cloud depicted in Figure 4 is used to
populate 3D occupancy grid maps. At top, an OctoMap
is depicted from two perspectives. At bottom, a Gaussian
process occupancy map is depicted from the same two
perspectives.

making about exploring this environment. The sonar-derived
point cloud is used as training data for a Gaussian process
regression in which the occupancy of the full map contents is
predicted. Furthermore, this procedure may be implemented
incrementally, scan-by-scan, in real-time.

Future work entails the rigorous testing and validation
of the full processing pipeline in a diversity of cluttered
3D environments, and the implementation of a sequential
decision-making process for the autonomous exploration of
such environments. One of the key challenges in producing
an accurate map is the slow rate at which the sonar’s
mechanical scanning beam rotates, allowing for motion of
the robot in the course of collecting a sonar scan. We will
explore registration of smaller scan sectors, in addition to the
integration of the filtering and scan-matching process into a
simultaneous localization and mapping (SLAM) framework
makes corrections to the robot’s trajectory across multiple
time-scales. In concert with the application of machine
learning to recover more descriptive occupancy maps, these
processes may be used to extract the maximum benefit from
the sparse, noisy sonar data that robots in cluttered marine
environments must rely on.
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