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I. INTRODUCTION

Survey class Autonomous Underwater Vehicles (AUVs)
typically rely on Doppler Velocity Logs (DVL) for precise
navigation near the seafloor. In cases where the distance
to the seafloor is greater than the DVL bottom lock range,
localizing between the surface where GPS is available and
the seafloor presents a localization problem, since both GPS
and DVL are unavailable in the mid-water column.

Previous work [3] [6] proposed a solution to navigation in
the mid-water column that exploits the stability of the vertical
water current profile in space over the minutes scale. With
repeated measurements of these currents with the Acoustic
Doppler Current Profiler (ADCP) mode of the DVL during
vertical descent, along with sensor fusion of other low cost
sensors, position error growth is constrained during the dive.
Following DVL bottom lock, due to correlations in the joint
vehicle and water current velocity estimation, the entire
velocity history is further constrained.

Previous work in this area includes [4] to generalize
the ADCP-aided filter to horizontal motion, including using
ADCP beam geometry and a water-volume grid approach
for the water velocity state space. Furthermore, a number
of extensions are developed in [5] to improve navigation
performance during missions characterized by prolonged
time-scales.

In this paper, the ADCP-aided filter is applied to a 25 hour
5000m deep straight line mission, with the environmental
effects considered. Also, the addition of IMU acceleration
outputs from a navigation grade IMU for the prediction
model as an alternative to the constant velocity (CV) model
are implemented and analyzed. The re-acquisition of DVL
bottom-lock at the end of the mission, simulating the vehicle
lowering altitude to within range of the seafloor, is also
investigated.

II. EXTENDED KALMAN FILTER WITH CURRENT
ESTIMATION

Position, velocity, and attitude states are estimated using
an EKF. Additionally, ADCP measurement biases for each
measurement cell in each beam are estimated, along with the
North, East, Down components of the water current velocity.
Water velocity states are modeled as nodes in a trilinear
interpolated grid, each with an associated velocity vector.
The prediction step in this implementation includes a CV
model and an IMU-acceleration based model.

Once the state matrix exceeds a certain size due to
initializing newly observed water current velocity states,
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the oldest of these states are marginalized out of the EKF,
which involves removing them from the state vector and
covariance matrix. This allows constant-time updates as the
state vector is not allowed to expand indefinitely and is
controlled to a maximum size. In this paper, we use a
maximum state vector size of 600, due to the geometry of the
beams, resolution of water current gridding, and processing
constraints. This is justified as older water current states may
no longer be observed, and if they are re-observed, they can
be re-initialized instead. Note, it is undesirable to set this
maximum size too low as it would result in continuously
re-initialized water current velocity states, throwing away
correlation information in the filter which could be useful.
Further detail regarding the formulation of the filter, sensor
models and correlation models can be found in [5].

A. Fusion with IMU Data

The IMU sensor data used in this paper (iXSEA PHINS II)
has post-processing applied, as the raw measurements with-
out added noise are not available due to export control. The
unit supplies north-referenced attitude utilizing the gravity
vector and gyrocompassing. The unit also supplies gravity-
compensated acceleration outputs, in our case at 10 Hz. In
order to use the acceleration output for our prediction model,
the following model is applied:

aPHINS = atrue + ba + νa (1)

where atrue is the true acceleration of the vehicle, ba is
the accelerometer bias, and νa is zero-mean Gaussian noise.
The bias in the accelerometer is modelled as a first-order
Markov process:

ḃa = − 1

τb,a
ba + νb,a (2)

where τb,a is a time constant which affects the rate at
which the bias changes, and νb,a is a random variable with
standard deviation [1]

σbias =

√
2fσ2

bias drift

τb,a
(3)

where σbias drift is the standard deviation of the bias in the
long term, which can be set as the bias stability specification
of the IMU to limit the magnitude of the bias with time, and
f is the frequency at which the process model operates. The
magnitude of τb,a was empirically tuned to a value of 10000
seconds.
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Fig. 1. The estimation result is compared to the ground truth from USBL
for Sentry 299.

III. FIELD RESULTS USING THE Sentry AUV
Our ADCP-aided localization algorithm was validated

using data obtained with the Sentry AUV on two separate
missions. Sentry is a 6000m rated AUV designed and built
by the Woods Hole Oceanographic Institution (WHOI) for
geophysical, geochemical, and biological surveys [2]. The
ADCP sensor is a 300 kHz Navigator (RD Instruments, San
Diego, CA) with 120m maximum range for water profiling.
The process model used for the vehicle is a CV model. The
process noise is tuned according to the worst case dynamics
possible by the vehicle and no thruster model is incorporated
in this experiment. Attitude information is supplied by a
PHINS inertial navigation system (IXSEA SAS, Marly-le-
Roi, France) used as a gyrocompass, depth is provided
by a nano-resolution pressure depth sensor (Paroscientific
Inc., Redmond, WA), and USBL measurements are supplied
by a Ranger USBL system (Sonardyne International Ltd.,
Aberdeen, UK). The error metrics used to reject ADCP
measurements are an error velocity threshold, percent good
reported from sensor, and χ2 test for normalized innovations.
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Fig. 2. Results for Sentry dives 298 with a constant velocity based
prediction model. The top plot shows the position residuals and 2 and 3 σ
uncertainty bounds while the lower plot shows the velocity estimate resid-
uals and uncertainty bounds. In the position estimate residuals compared
to the ground truth DVL+USBL solution stay within the 2σ uncertainty
bounds showing that the filter remains consistent.
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Fig. 3. Results for Sentry dives 298 with an IMU based prediction
model. As in Figure 2, the top plot shows the position residuals and 2 and
3 σ uncertainty bounds while the lower plot shows the velocity estimate
residuals and uncertainty bounds. Again, in the position estimate residuals
compared to the ground truth DVL+USBL solution stay within the 2σ
uncertainty bounds showing that the filter remains consistent.
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Fig. 4. Results for Sentry dives 299 with a constant velocity based
prediction model. As in Figure 2, the top plot shows the position residuals
and 2 and 3 σ uncertainty bounds while the lower plot shows the velocity
estimate residuals and uncertainty bounds. Again, in the position estimate
residuals compared to the ground truth DVL+USBL solution stay within
the 2σ uncertainty bounds showing that the filter remains consistent.
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Fig. 5. Results for Sentry dives 299 with an IMU based prediction
model. As in Figure 2, the top plot shows the position residuals and 2 and
3 σ uncertainty bounds while the lower plot shows the velocity estimate
residuals and uncertainty bounds. Again, in the position estimate residuals
compared to the ground truth DVL+USBL solution stay within the 2σ
uncertainty bounds showing that the filter remains consistent.

Results from two Sentry dives are reported here – Sen-
try298 and Sentry299. These missions are long distance
magnetic survey obtaining magnetic measurements in the



Western Pacific Ocean in December 2014 at operating depths
of approximately 5000m. Figure 1, shows the mission trajec-
tory — an approximately 80km straight line at 200m above
the seafloor, over a period of 25 hours. The experiment uses
the DVL and USBL for initialization at the start of the
mission, and then data-denies both for 25 hours. After 25
hours, DVL measurements are again processed by the filter
to simulate DVL bottom-lock re-acquisition at low altitude.
The following compares the results obtained between us-
ing the CV prediction model and using IMU acceleration
measurements in the process model on the Sentry 298-299
missions.

The results were process on an Intel i7-4771 CPU @
3.50GHz. The grid size used was 500m in the horizontal
direction and 40m in the vertical direction. The processing
times for each mission was approximately 7 hours, implying
potential real-time application.

One challenging feature of this dataset is the magnitude
of the noise in the ADCP measurements, as observed by
analysing the error velocity output, which range from 1-3
m/s (2σ). The deep water contains very few scatterers, thus
making the return signal particularly weak, as shown through
looking at the correlation signal and return signal strength
diagnostics. Nevertheless, once the sensor modeling accounts
for this uncertainty, in variance and bias uncertainty, the filter
behaves in a consistent manner when compared to the USBL
ground truth.

Figure 1 shows the estimated mission trajectory versus
the ground truth from USBL. Figures 2 shows the position
and velocity estimate error and uncertainty for Sentry298
with a CV model, where Figure 3 shows the same with
an IMU acceleration based prediction model. The error is
within the uncertainty bounds for position and velocity,
implying a consistent filter. The total position error grows
to 27.5 km (uncertainty 30.9 km 2σ) in the CV model case,
compared to 19.7 km (uncertainty 20.4 km 2σ) in the IMU
prediction model case. Once DVL bottom-lock is reacquired
at the end of the mission, a correction of approximately
1.5km and 2.7km in position occurs for the CV and IMU
case respectively. Uncertainty in position after DVL bottom-
lock reduces by 0.3km (2σ) for both cases. The velocity
uncertainty with a CV model fluctuates above 3.4 m/s (2σ)
compared to 1.0 m/s (2σ) with the IMU model.

Figures 4 shows the position estimate error and uncertainty
for Sentry299 with a CV model, where Figure 5 shows the
same with an IMU acceleration based prediction model. In
this case, the total position errors are 17.3 km (uncertainty
30.7 km 2σ) for the CV model case, and 8.8 km (uncertainty
20.2 km 2σ) for the IMU prediction model case. The uncer-
tainties are the same as Sentry298 in position and velocity, as
the same models and conditions were applied. Uncertainty in
position after DVL bottom-lock also reduces by 0.3km (2σ)
in each case. Compared to Sentry298, the error reduction
is smaller as the DVL measurement innovations are smaller
compared to the prior estimate from the filter (as seen in
Figures 4 and 5). In this case, the CV model corrects 1.5 km,
while the IMU model has a negligible correction of 37m.

Thus, it appears the addition of the IMU based acceleration
prediction model provides approximately one-third reduction
in the uncertainty in position, along with a two-thirds reduc-
tion in velocity uncertainty.

IV. FUTURE WORK

The additional incorporation of a dynamic model of the
vehicle can improve the accuracy of the method, further
reducing the error growth in position during GPS and DVL
bottom lock blackout periods. Further extensions based on
terrain maps obtained a priori or measurements of magnetic
field deviations for the purposes of navigation are considered
as future work.
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